Рабочая температура асинхронного двигателя

Эксплуатация и ремонт электродвигателей

Эксплуатация электродвигателей.

Для правильной эксплуатации электродвигателя необходимо своевременно выполнять техническое обслуживание, контролировать его работу, выявлять и устранять неисправности.

Часто причиной выхода электродвигателя из строя является перегрев обмоток за счет увеличения рабочего тока, поэтому при его эксплуатации необходимо проверять температуру нагрева. Нагрев статора у двигателя средней мощности можно проверить наощупь. На двигателях большой мощности для контроля температуры устанавливают термометры. Допустимая температура нагрева электродвигателя определяется классом изоляции. Так, обмотки статора электродвигателей серии А в защищенном исполнении, а также в закрытом обдуваемом исполнении 3-5-го габаритов имеют изоляцию класса А. Предельная температура для таких обмоток 95оС.

Обмотки двигателей серии А2 выполнены проводом с изоляцией класса Е, допустимая температура которой 120оС. В двигателях большой мощности серии А закрытого исполнения принята изоляция класса В с допустимой температурой 130оС.

Температура на поверхности двигателей в установившемся режиме на 15-20оС ниже температуры обмоток. Повышение температуры двигателей вызвано увеличением тока в обмотках статора по сравнению с номинальной. Поэтому для контроля за работой двигателей мощностью 40 кВт и выше устанавливаются амперметры. Причиной перегрева электродвигателей может быть и ухудшение условий охлаждения - двигатель загрязнен, укрыт кожухом или неисправен вентилятор.

Перед включением в работу любого электродвигателя его необходимо осмотреть, проверить пускорегулирующее устройство, наличие заземления. Если электродвигатель находится в ремонте или не работал более 20 суток, необходимо проверить сопротивление изоляции, наличие масла в подшипниках, состояние приводимого механизма.

Перегрузка электродвигателей по току выводит их из строя, так как увеличение тока в обмотке вызывает квадратичное повышение температуры. Следовательно, длительная перегрузка электродвигателя может привести к порче изоляции обмоток.

Перегрузка электродвигателя может быть определена изменением потребляемого тока. Но и при нормальной загрузке рабочей машины обмотка статора будет перегружаться по току при следующих условиях: неправильно соединена обмотка статора, т.е. при требуемом соединении ее "в треугольник" она соединена "в звезду". В этом случае электродвигатель на холостом ходу может развивать нормальную скорость, а при увеличении нагрузки до номинальной будет останавливаться; при пониженном напряжении в сети потребляемый электродвигателем ток возрастает и скорость вращения ротора снижается; плохой контакт в цепи статора во время работы двигателя может привести к потере одной из фаз, тогда в двух других фазах ток значительно возрастает; при повреждении механизма замыкания обмотки ротора у электродвигателя с фазным ротором двигатель будет работать с введенным сопротивлением и не разовьет номинальную скорость; повышенное напряжение в сети; затвердевшая, загрязненная смазка, излишнее трение уплотнений о вал, перекос вала, отсутствие смазки, поломки шариков - все это будет вызывать в какой-то мере уменьшение скорости вращения ротора.

Особое внимание необходимо обращать на величину напряжения в питающей сети. При снижении напряжения сети на 10% загрузку электродвигателя необходимо уменьшить на 20%, так как момент электродвигателя пропорционален квадрату напряжения. Для надежной работы электродвигателя напряжение на его зажимах должно быть не менее 80% номинального.

Для нормальной работы двигателя его подшипники необходимо содержать в чистоте. Чтобы в них не попала пыль и грязь, крышки подшипников должны быть плотно закрыты. После удаления отработанной смазки подшипники промывают керосином и продувают сжатым воздухом.

Смазка для роликовых и шариковых подшипников подбирается в зависимости от быстроходности двигателя. Перед применением ее надо пропустить через специальный мазевый фильтр.

В подшипники качения смазка добавляется с помощью специальных приспособлений небольшими порциями. Очень плотно набивать смазку нельзя, так как это может вызвать повышенный нагрев подшипников.

Коллекторы двигателей постоянного тока должны содержаться в чистоте, так как металлическая угольная пыль является токопроводящей и вызывает искрение на коллекторах. Поверхность коллектора должна быть хорошо отполирована, не иметь царапин, нагара. При вращении коллектора не должно быть биения.

При работе двигателя постоянного тока коллекторные пластины изнашиваются значительно быстрее, чем слюдяные прокладки между ними. В результате слюда выступает над поверхностью коллектора, что вызывает искрение.

Контактные кольца необходимо содержать в чистоте, так как их загрязнение вызывает искрение щеток. Кольца периодически надо протирать чистой сухой, неволокнистой тряпкой, ее можно смочить денатуратом.

Щетки, находящиеся в нормальном состоянии, не искрят и имеют гладкую вертикальную поверхность. При этом они должны иметь нормальное нажатие. Давление щеток проверяется с помощью динамометра и не должно превышать 150-200 г/см2 (15-20 кПа). Проверка нажатия щеток производится при остановленном двигателе. При срабатывании щеток до 4 мм или плохом креплении в щеткодержателях их нужно заменить новыми.

Новые щетки должны пришлифовываться к коллектору и кольцам. Шлифовка производится стеклянной бумагой, которая подкладывается рабочей стороной к щеткам.

При эксплуатации электродвигателей особое внимание должно быть уделено изоляции обмоток, так как ее повреждение ведет к выходу двигателя из строя. В процессе эксплуатации с обмоток продувкой и обтиранием слегка промасленной тряпкой необходимо удалить пыль и грязь.

Перед установкой электродвигателя необходимо убедиться в отсутствии замыкания обмоток между собой. и на корпус двигателя, можно произвести измерение сопротивления изоляции. Сопротивление изоляции считается нормальным при величине 0,5 МОм и выше. Оно измеряется с помощью мегомметра. Для этого один его конец соединяют с выводом обмотки, а второй поочередно с выводами других обмоток и корпусом двигателя. Затем вращая ручку мегомметра, по шкале определяют величину сопротивления изоляции. При величине сопротивления изоляции ниже 0,5 МОм двигатель необходимо просушить.

Для определения сопротивления обмоток двигателя пользуются омметрами или авометрами.

Ремонт электродвигателей.

Капитальный ремонт электродвигателей необходимо производить на специализированных предприятиях.

При проведении текущего ремонта производится разборка электродвигателя и последующая частичная замена деталей пришедших в негодность. Рассмотрим порядок разборки и сборки асинхронного электродвигателя.

Рабочая температура асинхронного двигателя рабочий

С вала электродвигателя с помощью винтового съемника необходимо снять шкив или полумуфту. Затем отверните болты, крепящие кожух вентилятора, и снимите кожух. При помощи винтового съемника отверните стопорный винт и снимите вентилятор. Если необходимо этим же съемником снимите подшипники с вала двигателя. Отвернув крепящие болты и гайки, снимите крышки подшипников. Выверните болты, крепящие подшипниковые щиты, снимите щиты легкими ударами молотка через деревянную прокладку. Для предупреждения повреждения стали и обмоток, в воздушный зазор поместите картонную прокладку, на которую опустите ротор.

Сборку электродвигателя производят в обратном порядке. После сборки электродвигатель необходимо опробовать. Проверните ротор рукой за шкив. Если сборка проведена правильно, то он должен легко вращаться. Установите двигатель на место, подключите к сети и проверьте его работу на холостом ходу. Затем соедините его с валом станка и снова проверьте.

Рассмотрим некоторые характерные неисправности асинхронных двигателей их выявление и устранение.

Двигатель не запускается, если отсутствует напряжение в сети, отключен автомат или перегорели предохранители. Наличие напряжения в сети можно проверить с помощью вольтметра переменного тока со шкалой до 500 В или низковольтным индикатором. Включите автомат или замените перегоревшие предохранители. Если перегорает один предохранитель, электродвигатель будет издавать характерное гудение.

Обрыв одной из фаз обмотки статора можно обнаружить при помощи мегомметра, предварительно освободив все концы обмоток двигателя. Если обнаружен обрыв внутри фазы обмотки двигатель необходимо отправить в ремонт.

Снижение напряжения на зажимах двигателя при его запуске допускается до 30% от номинального. Оно вызывается потерями в сети, малой мощностью трансформатора или его перегрузкой.

При снижении напряжения на зажимах электродвигателя произведите замену питающего трансформатора или увеличьте сечение проводов подводящей линии.

Отсутствие контакта питающей сети в одной из обмоток статора - выпадение фазы - приводит к увеличению тока в его обмотках и снижению числа оборотов. Если двигатель оставить работать на двух обмотках, он сгорит.

Кроме перечисленных выше электрических неисправностей в электродвигателях могут быть неисправности механического характера. Причиной чрезмерного нагрева подшипников может быть неправильная сборка подшипников, плохая центровка двигателя, загрязнение подшипников или большой износ шариков и роликов.

Приложение.

АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ

ДВИГАТЕЛИ ЗАКРЫТОГО ОБДУВАЕМОГО ИСПОЛНЕНИЯ

Самые читаемые

При эксплуатации электродвигателей в них по разным причинам возникают неисправности, которые могут привести к перерывам в работе станков и других производственных механизмов. Для того чтобы такие перерывы возможно меньше сказывались на выполнении предприятием производственных планов, необходимо уметь быстро найти причину неисправности и устранить ее.

Необходимость в быстрейшем устранении повреждений обусловливается также и тем, что работа электродвигателя, имеющего небольшое повреждение, может привести к развитию повреждения и необходимости более сложного ремонта.

Чтобы определить объем ремонта асинхронного электродвигателя . необходимо выявить характер его неисправностей. Неисправности асинхронного двигателя разделяют на внешние и внутренние.

К внешним неисправностям относятся:

  • обрыв одного или нескольких проводов, соединяющих асинхронный двигатель с сетью, или неправильное соединение;
  • перегорание плавкой вставки предохранителя;
  • неисправности аппаратуры пуска или управления, пониженное или повышенное напряжение питающей сети;
  • перегрузка асинхронного двигателя;
  • плохая вентиляция.

Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими.

Механические повреждения:

  • нарушение работы подшипников;
  • деформация или поломка вала ротора (якоря);
  • разбалтывание пальцев щеткодержателей;
  • образование глубоких выработок («дорожек») на поверхности коллектора и контактных колец;
  • ослабление крепления полюсов или сердечника статора к станине; обрыв или сползание проволочных бандажей роторов (якорей);
  • трещины и подшипниковых щитах или в станине и др.

Электрические повреждения:

  • межвитковые замыкания;
  • обрывы в обмотках;
  • пробой изоляции на корпус;
  • старение изоляции;
  • распайка соединений обмотки с коллектором;
  • неправильная полярность полюсов;
  • неправильные соединения в катушках и др.

Наиболее распространенные неисправности асинхронных электродвигателей :

  1. Перегрузка или перегрев статора электродвигателя - 31%.
  2. Межвитковое замыкание - 15%.
  3. Повреждения подшипников - 12%.
  4. Повреждение обмоток статора или изоляции - 11%.
  5. Неравномерный воздушный зазор между статором и ротором - 9%.
  6. Работа электродвигателя на двух фазах - 8%.
  7. Обрыв или ослабление крепления стержней в беличьей клетке - 5%.
  8. Ослабление крепления обмоток статора - 4%. 9. Дисбаланс ротора электродвигателя - 3%. 1
  9. Несоосность валов - 2%.

Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения.

Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки.

К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.

В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.

Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.

Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.

Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.

Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.

У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.

Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.

Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.

Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.

Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.

При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.

При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.

Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.

Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.

Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.

Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д. Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.

Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током.

Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.

Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром.

Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению.

Общая информация по электродвигателям

Электродвигатель является ключевым звеном в механизме, обеспечивая его работоспособность. От того, какие характеристики предлагает двигатель, так будут действовать и все устройство в целом. Электродвигатели охватывают все сферы человеческой деятельности, в первую очередь, широко востребованы в промышленности.

Синхронный электродвигатель представляет собой устройство переменного тока. Частота вращения магнитного поля, которое создает якорь, равна частоте вращения ротора.

Асинхронный электродвигатель представляет собой устройство, работающее за счет переменного тока, преобразуя электрическую энергию в механическую. В этом устройстве частота вращения ротора не равна частоте вращения магнитного поля. Бесперебойная и надежная работа асинхронного двигателя обеспечивается соблюдением необходимых условий: высота над уровнем моря, на которой работает двигатель, не должна превышать 1000 м; температура окружающей среды варьируется от -40 до +40 С; относительная влажность воздуха не должна превышать 90% (при температуре +25 С), запыленность воздуха для закрытых двигателей менее 10 мг/м3, 2 мг/м3 — для защищенных.

Для нестандартных условий производятся двигатели особого исполнения.

Взрывозащищенные асинхронные электродвигатели исключают возможность взрыва за счет заключения элементов двигателя, напрямую взаимодействующих с электричеством, в взрывонепроницаемую оболочку. Такая оболочка выдерживает давление взрыва внутри, не давая ему выйти в окружающую среду.

Общая схема маркировки электродвигателей

1. Обозначение серии:

АИР, А, 4А, 5А, АД, 7AVER — общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000

АИС, 6А, IMM, RA, AIS — общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)

АИМ, АИМЛ, ВА, АВ, ВАО2, 1ВАО, 3В - взрывозащищенные электродвигатели

АИУ, ВРП, АВР, 3АВР, ВР - взрывозащищенные рудничные электродвигатели

А4, ДАЗО4, АОМ, ДАВ, АО4 - высоковольтные электродвигатели

2. Признак модификации:

М- модернизированный электродвигатель (например: АДМ 63А2У3)

К- электродвигатель с фазным ротором (например: 5 АНК 280А6)

Х- электродвигатель с алюминиевой станиной (например: 5АМХ 180М2У3)

Е- однофазный электродвигатель 220В (например: АИРЕ 80С2У3)

2 (3000 об/мин), 4 (1500 об/мин), 6 (1000 об/мин), 8 (750 об/мин), 10 (600 об/мин), 12 (500 об/мин)

4/2, 6/4, 8/6, 12/4, 12/6, 6/4/2, 8/6/4 и т.д. — многоскоростные электродвигатели

6. Признак конструктивной модификации:

Б — электродвигатель со встроенным датчиком температурной защиты обмотки

Б1 — электродвигатель с датчиком температурной защиты обмотки и подшипниковых узлов

Б2 — электродвигатель с датчиком температурной защиты обмотки и подогревателем

Е — электродвигатель со встроенным электромагнитным тормозом (например: АИР80А2Е У3)

Е2 — электродвигатель со встроенным тормозом и ручкой расторможения

П — электродвигатель с повышенной точностью по установочным размерам

Ж — электтродвигатель для привода моноблочных насосов (например: АИР80А2Ж У2)

Н — малошумный электродвигатель (например: 5АН180S4/16Н ЛБУХЛ4)

Л - электродвигатель для привода лифтов (например: 5АН180S4/16НЛ БУХЛ4)

С — электродвигатель для привода нефтяных станков-качалок (например: АИР180S4С НУ1)

Тр — электродвигатель для осевых вентиляторов в системах охлаждения трансформаторов

Р3 — электродвигатель для мотор-редукторов

7. Климатическое исполнение (ГОСТ 15150-69)

У — для макроклиматического района с умеренным климатом

УХЛ — для макроклиматических районов с умеренным и холодным климатом

ХЛ - для макроклиматического района с холодным климатом

Т — для макроклиматических районов как с сухим, так и с влажным тропическим климатом

М — для макроклиматического района района с умеренно-холодным морским климатом

О - для всех макроклиматических районов на суше, кроме очень холодного (общеклиматическое исполнение)

В — для всех макроклиматических районов на суше и на море, кроме очень холодного (всеклиматическое исполнение)

8. Категории размещения (ГОСТ 15150-69)

1- для эксплуатации на открытом воздухе

2- для эксплуатации под навесом, в палатках, кузовных прицепах

3 - для эксплуатации в помещениях без регулируемых климатических условий

4 - для эксплуатации в помещениях с искусственно регулируемыми климатическими условиями

5 - для эксплуатации в помещениях с повышенной влажностью

Рекомендуем также прочитать
Оглавление 2. Двухпроводные датчики 2.1 DS620 Низковольтный термометр и термостат, точность 0,5°C 2.2 DS1621 Термометр и термостат
Термометр ТГП-16СГВЗТ4 показывающий сигнализирующий
Цифровой датчик температуры DS18B20 для Arduino Производитель. Dallas Наличие. В наличии! Единица. шт. Описание Отзывы Изображения
как обмануть датчик Серёг, вряд-ли он в компе. На впуске должен стоять сей датчик. Подъезжай завтра сутра ко мне на работу - разберёмся.
Замена датчиков температуры Надо: ключ или головка на 22, отвертка, если придется снимать термостат то головочка на 10 с небольшим удлинителем, антифриз на доливку.