Регулирование температуры датчики температуры

Температура теплоносителя в системе отопления: расчет и регулирование

Содержание:

Какой должна быть температура теплоносителя в системе отопления, чтобы в доме жилось комфортно? Этот момент интересует многих потребителей.

При выборе температурного режима, учитывается несколько факторов:

  • необходимость достижения нужной степени обогрева помещений;
  • обеспечение надежной, стабильной, экономичной и продолжительной работы отопительного оборудования;
  • эффективная передача тепловой энергии по трубопроводам.

Температура теплоносителя в отопительной сети

Система теплоснабжения обязана функционировать таким образом, чтобы в помещении было комфортно находиться. Согласно нормативным документам, температура в жилых домах не должна опускаться ниже 18 градусов, а для детских учреждений и больниц - это 21 градус тепла.

Но следует учитывать, что в зависимости от температуры воздуха снаружи здания строение через ограждающие конструкции может терять разную величину тепла. Поэтому температура теплоносителя в системе отопления, исходя из внешних факторов, варьируется пределе от 30 до 90 градусов. При нагреве воды свыше в отопительной конструкции начинается разложение лакокрасочных покрытий, что запрещено санитарными нормами.

Чтобы определить, какая должна быть температура теплоносителя в батареях, используют специально разработанные температурные графики для конкретных групп зданий. В них отражена зависимость степени нагрева теплоносителя от состояния наружного воздуха. Также можно задействовать автоматическую регулировку согласно показаниям датчика, расположенного в помещении.

Оптимальная температура для котельной

Для обеспечения эффективной теплоотдачи в котлах отопления должна быть более высокая температура, поскольку, чем больше тепла может перенести определенный объем воды, тем лучше степень обогрева. Поэтому на выходе из теплогенератора стараются приблизить температуру жидкости к максимально допустимым показателям.

Помимо этого, минимальный нагрев воды или другого теплоносителя в котле нельзя опускать ниже точки росы (обычно данный параметр равен 60-70 градусов, но он во многом зависит от технических особенностей модели агрегата и вида топлива). В противном случае при горении теплогенератора появляется конденсат, который в соединении с агрессивными веществами, имеющимися в составе дымовых газов, приводит к повышенному износу прибора.

Согласование температуры воды в котле и системе

Существует два варианта, как можно согласовать высокотемпературные теплоносители в котле и более низкотемпературные в отопительной системе:

  1. В первом случае следует пренебречь эффективностью функционирования котла и на выходе из него выдавать теплоноситель такой степени нагрева, которая требуется системе в настоящее время. Так поступают в работе небольших котельных. Но в итоге получается не всегда подавать теплоноситель в соответствии с оптимальным температурным режимом согласно графику (прочитайте: "График отопительного сезона - начало и конец сезона "). В последнее время все чаще в небольших котельных на выходе монтируют регулятор нагрева воды с учетом показаний, который фиксирует датчик температуры теплоносителя.
  2. Во втором случае, нагрев воды для транспортировки по сетям на выходе из котельной делают максимальным. Далее в непосредственной близости от потребителей производится автоматическое регулирование температуры теплоносителя до необходимых значений. Такой способ считается более прогрессивным, его применяют на многих крупных теплосетях, а поскольку регуляторы и датчики стали дешевле, его все чаще используют на небольших объектах теплоснабжения.

Принцип работы регуляторов отопления

Регулятор температуры теплоносителя, циркулирующего в отопительной системе - это прибор, с помощью которого обеспечивается автоматический контроль и корректировка температурных параметров воды.

Состоит данное устройство, изображенное на фото, из следующих элементов:

  • вычислительный и коммутирующий узел;
  • рабочий механизм на трубе подачи горячего теплоносителя;
  • исполнительный блок, предназначенный для подмеса теплоносителя, поступающего из обратки. В ряде случаев устанавливают трехходовой кран;
  • повысительный насос на участке подачи;
  • не всегда повысительный насос на отрезке «холодного перепуска»;
  • датчик на линии подачи теплоносителя;
  • клапаны и запорная арматура;
  • датчик на обратке;
  • датчик температуры наружного воздуха;
  • несколько датчиков температуры помещения.

Теперь необходимо разобраться, как происходит регулирование температуры теплоносителя и как функционирует регулятор.

На выходе из отопительной системы (обратке) температура теплоносителя зависит от объема воды, прошедшей через нее, поскольку нагрузка является относительно постоянной величиной. Прикрывая подачу жидкости, регулятор тем самым увеличивает разность между линией подачи и обраткой до требуемого значения (на данных трубопроводах устанавливают датчики).

Когда наоборот необходимо увеличить поток теплоносителя, тогда в систему теплоснабжения врезают повысительный насос, которым тоже управляет регулятор. С целью понижения температуры водяного входящего потока применяют холодный перепуск», который означает, что часть носителя тепла, уже проциркулировавшего по системе, вновь направляют на вход.

В результате регулятор, перераспределяя потоки теплоносителя в зависимости от данных, зафиксированных датчиком, обеспечивает соблюдение температурного графика отопительной системы.

Нередко такой регулятор комбинируют с регулятором горячего водоснабжения с помощью одного вычислительного узла. Прибор, регулирующий ГВС, проще в управлении и в части исполнительных механизмов. При помощи датчика на линии горячего водоснабжения выполняется регулировка прохода воды через бойлер и в итоге она стабильно имеет стандартные 50 градусов.

Преимущества применения регулятора в теплоснабжении

Использование регулятора в отопительной системе имеет следующие положительные моменты:

  • он позволяет четко выдерживать температурный график, в основе которого лежит расчет температуры теплоносителя (прочитайте: "Правильный расчет теплоносителя в системе отопления ");
  • не допускается повышенный нагрев воды в системе и тем самым обеспечивается экономное расходование топлива и тепловой энергии;
  • производство тепла и его транспортировка происходят в котельных при самых эффективных параметрах, а необходимые для обогрева характеристики теплоносителя и ГВС создает регулятор в ближайшем к потребителю тепловом узле или пункте (прочитайте: "Теплоноситель для системы отопления - параметры давления и скорости ");
  • для всех абонентов теплосети обеспечиваются одинаковые условия вне зависимости от расстояния до источника теплообеспечения.

Посмотрите также видео о циркуляции теплоносителя в системе отопления:

Системы автоматического регулирования температуры

По принципу регулирования все системы автоматического регулирования подразделяются на четыре класса.

1. Система автоматической стабилизации - система, в которой регулятор поддерживает постоянным заданное значение регулируемого параметра.

2. Система программного регулирования - система, обеспечивающая изменение регулируемого параметра по заранее заданному закону (во времени).

3. Следящая система - система, обеспечивающая изменение регулируемого параметра в зависимости от какой-либо другой величины.

4. Система экстремального регулирования - система, в которой регулятор поддерживает оптимальное для изменяющихся условий значение регулируемой величины.

Для регулирования температурного режима электронагревательных установок применяются в основном системы двух первых классов.

Системы автоматического регулирования температуры по роду действия можно разделить на две группы: прерывистого и непрерывного регулирования.

Автоматические регуляторы систем автоматического регулирования (САР) по функциональным особенностям разделены на пять типов: позиционные (релейные), пропорциональные (статические), интегральные (астатические), изодромные (пропорционально-интегральные), изодромные с предварением и с первой производной.

Позиционные регуляторы относятся к прерывистым САР, а остальные типы регуляторов - к САР непрерывного действия. Ниже рассмотрены основные особенности позиционных, пропорциональных, интегральных и изодромных регуляторов, имеющих наибольшее применение в системах автоматического регулирования температуры.

Функциональная схема автоматического регулирования температуры (рис. 1) состоит из объекта регулирования 1, датчика температуры 2, программного устройства или задатчика уровня температуры 4, регулятора 5 и исполнительного устройства 8. Во многих случаях между датчиком и программным устройством ставится первичный усилитель 3, а между регулятором и исполнительным устройством - вторичный усилитель 6. Дополнительный датчик 7 применяется в изодромных системах регулирования.

Рис. 1. Функциональная схема автоматического регулирования температуры

В качестве датчиков температуры применяются термопары, термосопротивления (термисторы) и термометры сопротивления.Наиболее часто используются термопары. Более подробно про них смотрите здесь: Термоэлектрические преобразователи (термопары)

Позиционными называют такие регуляторы, у которых регулирующий орган может занимать два или три определенных положения. В электронагревательных установках применяются двух- и трехпозиционные регуляторы. Они просты и надежны в эксплуатации.

На рис. 2 показана принципиальная схема двухпозиционного регулирования температуры воздуха.

Рис. 2. Принципиальная схема двухпозиционного регулирования температуры воздуха: 1 - объект регулирования, 2 - измерительный мост, 3 - поляризованное реле, 4 - обмотки возбуждения электродвигателя, 5 - якорь электродвигателя, 6 - редуктор, 7 - калориф.

Для контроля температуры в объекте регулирования служит термосопротивление ТС, включенное в одно из плеч измерительного моста 2. Величины сопротивлений моста подбираются таким образом, чтобы при заданной температуре мост был уравновешен, то есть напряжение в диагонали моста равнялось нулю. При повышении температуры поляризованное реле 3, включенное в диагональ измерительного моста, включает одну из обмоток 4 электродвигателя постоянного тока, который с помощью редуктора 6 закрывает воздушный клапан перед калорифером 7. При понижении температуры воздушный клапан полностью открывается.

При двухпозиционном регулировании температуры количество подаваемого тепла может устанавливаться только на двух уровнях - максимальном и минимальном. Максимальное количество тепла должно быть больше необходимого для поддержания заданной регулируемой температуры, а минимальное - меньше. В этом случае температура воздуха колеблется около заданного значения, то есть устанавливается так называемый автоколебательный режим (рис. 3, а).

Линии, соответствующие температурам τ н и τ в, определяют нижнюю и верхнюю границы зоны нечувствительности. Когда температура регулируемого объекта, уменьшаясь, достигает значения τ н количество подаваемого тепла мгновенно увеличивается и температура объекта начинает возрастать. Достигнув значения τ в, регулятор уменьшает подачу тепла, и температура понижается.

Рис. 3. Временная характеристика двухпозиционного регулирования (а) и статическая характеристика двухпозиционного регулятора (б).

Скорость повышения и понижения температуры зависит от свойств объекта регулирования и от его временной характеристики (кривой разгона). Колебания температуры не выходят за границы зоны нечувствительности, если изменения подачи тепла сразу вызывают изменения температуры, то есть если отсутствует запаздывание регулируемого объекта.

С уменьшением зоны нечувствительности амплитуда колебаний температуры уменьшается вплоть до нуля при τ н = τ в. Однако для этого требуется, чтобы подача тепла изменялась с бесконечно большой частотой, что практически осуществить чрезвычайно трудно. Во всех реальных объектах регулирования имеется запаздывание. Процесс регулирования в них протекает примерно так.

При понижении температуры объекта регулирования до значения τ н мгновенно изменяется подача тепла, однако из-за запаздывания температура некоторое время продолжает снижаться. Затем она повышается до значения τ в, при котором мгновенно уменьшается подача тепла. Температура продолжает еще некоторое время повышаться, затем из-за уменьшенной подачи тепла температура понижается, и процесс повторяется вновь.

На рис. 3, б приведена статическая характеристика двухпозицибнного регулятора. Из нее следует, что регулирующее воздействие на объект может принимать только два значения: максимальное и минимальное. В рассмотренном примере максимум соответствует положению, при котором воздушный клапан (см. рис. 2) полностью открыт, минимум - при закрытом клапане.

Знак регулирующего воздействия определяется знаком отклонения регулируемой величины (температуры) от ее заданного значения. Величина регулирующего воздействия постоянна. Все двухпозиционные регуляторы обладают гистерезисной зоной α. которая возникает из-за разности токов срабатывания и отпускания электромагнитного реле.

Пропорциональные (статические) регуляторы температуры

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования. К ним относятся пропорциональные регуляторы (П-регуляторы). пригодные для регулирования самых разнообразных технологических процессов.

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования. К ним относятся пропорциональные регуляторы (П-регуляторы), пригодные для регулирования самых разнообразных технологических процессов.

В системах автоматического регулирования с П-регуляторами положение регулирующего органа (у) прямо пропорционально значению регулируемого параметра (х):

где k1 - коэффициент пропорциональности (коэффициент усиления регулятора).

Эта пропорциональность имеет место, пока регулирующий орган не достигнет своих крайних положений (конечных выключателей).

Скорость перемещения регулирующего органа прямо пропорциональна скорости изменения регулируемого параметра.

На рис. 4 показана принципиальная схема системы автоматического регулирования температуры воздуха в помещении при помощи пропорционального регулятора. Температура в помещении измеряется термометром сопротивления ТС, включенным в схему измерительного моста 1.

Рис. 4. Схема пропорционального регулирования температуры воздуха: 1 - измерительный мост, 2 - объект регулирования, 3 - теплообменник, 4 - конденсаторный двигатель, 5 - фазочувствительный усилитель.

При заданной температуре мост уравновешен. При отклонении регулируемой температуры от заданного значения в диагонали моста возникает напряжение разбаланса, величина и знак которого зависят от величины и знака отклонения температуры. Это напряжение усиливается фазочувствительным усилителем 5, на выходе которого включена обмотка двухфазного конденсаторного двигателя 4 исполнительного механизма.

Исполнительный механизм перемещает регулирующий орган, изменяя поступление теплоносителя в теплообменник 3. Одновременно с перемещением регулирующего органа происходит изменение сопротивления одного из плеч измерительного моста, в результате этого изменяется температура, при которой уравновешивается мост.

Таким образом, каждому положению регулирующего органа из-за жесткой обратной связи соответствует свое равновесное значение регулируемой температуры.

Для пропорционального (статического) регулятора характерна остаточная неравномерность регулирования.

В случае скачкообразного отклонения нагрузки от заданного значения (в момент t1) регулируемый параметр придет по истечении некоторого отрезка времени (момент t2) к новому установившемуся значению (рис. 4). Однако это возможно только при новом положении регулирующего органа, то есть при новом значении регулируемого параметра, отличающегося от заданного на величину δ.

Рис. 5. Временные характеристики пропорционального регулирования

Недостаток пропорциональных регуляторов состоит в том, что каждому значению параметра соответствует только одно определенное положение регулирующего органа. Для поддержания заданного значения параметра (температуры) при изменении нагрузки (расхода тепла) необходимо, чтобы регулирующий орган занял другое положение, соответствующее новому значению нагрузки. В пропорциональном регуляторе этого не происходит, вследствие чего возникает остаточное отклонение регулируемого параметра.

Интегральные (астатические регуляторы)

Интегральными (астатическими) называются такие регуляторы, в которых при отклонении параметра от заданного значения регулирующий орган перемещается более или менее медленно и все время в одном направлении (в пределах рабочего хода) до тех пор, пока параметр снова не примет заданного значения. Направление хода регулирующего органа изменяется лишь тогда, когда параметр переходит через заданное значение.

В интегральных регуляторах электрического действия обычно искусственно создается зона нечувствительности, в пределах которой изменение параметра не вызывает перемещений регулирующего органа.

Скорость перемещения регулирующего органа в интегральном регуляторе может быть постоянной и переменной. Особенностью интегрального регулятора является отсутствие пропорциональной связи между установившимися значениями регулируемого параметра и положением регулирующего органа.

На рис. 6 приведена принципиальная схема системы автоматического регулирования температуры при помощи интегрального регулятора. В ней в отличие от схемы пропорционального регулирования температуры (см. рис. 4) нет жесткой обратной связи.

Рис. 6. Схема интегрального регулирования температуры воздуха

В интегральном регуляторе скорость регулирующего органа прямо пропорциональна величине отклонения регулируемого параметра.

Рис. 7. Временные характеристики интегрального регулирования

Изодромные (пропорционально-интегральные) регуляторы

Изодромное регулирование обладает свойствами как пропорционального, так и интегрального регулирования. Скорость перемещения регулирующего органа зависит от величины и скорости отклонения регулируемого параметра.

При отклонении регулируемого параметра от заданного значения регулирование осуществляется следующим образом. Вначале регулирующий орган перемещается в зависимости от величины отклонения регулируемого параметра, то есть имеет место пропорциональное регулирование. Затем регулирующий орган совершает дополнительное перемещение, которое необходимо для устранения остаточной неравномерности (интегральное регулирование).

Изодромную систему регулирования температуры воздуха (рис. 8) можно получить заменой жесткой обратной связи в схеме пропорционального регулирования (см. рис. 5) упругой обратной связью (от регулирующего органа к движку сопротивления обратной связи). Электрическая обратная связь в изодромной системе осуществляется потенциометром и вводится в систему регулирования через контур, содержащий сопротивление R и емкость С.

В течение переходных процессов сигнал обратной связи вместе с сигналом отклонения параметра воздействует на последующие элементы системы (усилитель, электродвигатель). При неподвижном регулирующем органе, в каком бы положении он ни находился, по мере заряда конденсатора С сигнал обратной связи затухает (в установившемся режиме он равен нулю).

Рис. 8. Схема изодромного регулирования температуры воздуха

Для изодромного регулирования характерно, что неравномерность регулирования (относительная ошибка) с увеличением времени уменьшается, приближаясь к нулю. При этом обратная связь не будет вызывать остаточных отклонений регулируемой величины.

Таким образом, изодромное регулирование приводит к значительно лучшим результатам, чем пропорциональное или интегральное (не говоря уже о позиционном регулировании). Пропорциональное регулирование в связи с наличием жесткой обратной связи происходит практически мгновенно, изодромное - замедленно.

Программные системы автоматического регулирования температуры

Для осуществления программного регулирования необходимо непрерывно воздействовать на настройку (уставку) регулятора так, чтобы регулируемая величина изменялась по заранее заданному закону. С этой целью узел настройки регулятора снабжается программным элементом. Это устройство служащее для установления закона изменения задаваемой величины.

При электронагреве исполнительный механизм САР может воздействовать на включение или отключение секций электронагревательных элементов, изменяя тем самым температуру нагреваемой установки в соответствии с заданной программой. Программное регулирование температуры и влажности воздуха широко применяется в установках искусственного климата.

Контроль и регулирование температуры

Температура является одним из наиболее распространенных параметров многих технологических процессов различных областей промышленности.

Выпускаются самые разнообразные приборы для контроля и регулирования температуры - от простейших устройств до цифровых машин управления и контроля.

Устройства, выполняющие преобразование измеренной величины температуры в другую, более удобную для контроля физическую величину называются датчиками температуры. Принцип действия наиболее применяемых в промышленности датчиков может быть основан на таких явлениях, как тепловое расширение, изменение электрической проводимости вещества и появления контактной термо - э.д.с. В зависимости от своих особенностей, датчики температуры имеют различные наименования: термометр, термосигнализатор, реле температуры, терморегулятор и др.

Наиболее распространенными типами датчиков температуры являются ртутные, манометрические, биметаллические и дилатометрические датчики.

Рекомендуем также прочитать
Преобразователь "температура-напряжение" Преобразователь "температура-напряжение" (RU 2374709): G01R19/32 - компенсация температурных изменений
Шкаф пекарский UNOX XBC 405 E
Датчики температуры
Общие сведения Общие сведения. Выбор компонентов системы Уровнемеры ПМП-201 (СИ СЕНС). Магнитострикционный уровнемер-плотномер.